Learning Constrained Generalizable Policies by Demonstration
نویسندگان
چکیده
Many practical tasks in robotic systems, such as cleaning windows, writing or grasping, are inherently constrained. Learning policies subject to constraints is a challenging problem. We propose a locally weighted constrained projection learning method (LWCPL) that first estimates the constraint and then exploits this estimate across multiple observations of the constrained motion to learn an unconstrained policy. The generalization is achieved by projecting the unconstrained policy onto a new, previously unseen, constraint. We do not require any prior knowledge about the task or the policy, so we can use generic regressors to model the task and the policy. However, any prior beliefs about the structure of the motion can be expressed by choosing task-specific regressors. In particular, we can use robot kinematics and motion priors to improve the accuracy. Our evaluation results show that LWCPL outperform the state of the art method in accuracy of learning the constraints as well as the unconstrained policy, even in noisy conditions. We have validated our method by learning a wiping task from human demonstration on flat surfaces and reproducing it on an unknown curved surface using a force/torque based controller to achieve tool alignment. We show that, despite of the differences between the training and validation scenarios, we learn a policy that still provides the desired wiping motion.
منابع مشابه
A novel method for learning policies from variable constraint data
Many everyday human skills can be framed in terms of performing some task subject to constraints imposed by the environment. Constraints are usually unobservable and frequently change between contexts. In this paper, we present a novel approach for learning (unconstrained) control policies from movement data, where observations come from movements under different constraints. As a key ingredien...
متن کاملLearning Dexterous Manipulation for a Soft Robotic Hand from Human Demonstration
Dexterous multi-fingered hands can accomplish fine manipulation behaviors that are infeasible with simple robotic grippers. However, sophisticated multi-fingered hands are often expensive and fragile. Low-cost soft hands offer an appealing alternative to more conventional devices, but present considerable challenges in sensing and actuation, making them difficult to apply to more complex manipu...
متن کاملLearning Dynamic Policies from Demonstration
We address the problem of learning a policy directly from expert demonstrations. Typically, this problem is solved with a supervised learning method such as regression or classification to learn a reactive policy. Unfortunately, reactive policies lack the ability to model long-range dependancies and this omission can result in suboptimal performance. So, we take a different approach. We observe...
متن کاملTowards Robust Skill Generalization: Unifying Learning from Demonstration and Motion Planning
In this paper, we present Combined Learning from demonstration And Motion Planning (CLAMP) as an efficient approach to skill learning and generalizable skill reproduction. CLAMP combines the strengths of Learning from Demonstration (LfD) and motion planning into a unifying framework. We carry out probabilistic inference to find trajectories which are optimal with respect to a given skill and al...
متن کاملRobot Programming by Demonstration with Crowdsourced Action Fixes
Programming by Demonstration (PbD) can allow endusers to teach robots new actions simply by demonstrating them. However, learning generalizable actions requires a large number of demonstrations that is unreasonable to expect from end-users. In this paper, we explore the idea of using crowdsourcing to collect action demonstrations from the crowd. We propose a PbD framework in which the end-user ...
متن کامل